| Notations | Definitions | | | |
| ---------------------------- | -------------------------------------------------------- | --- | --- | ------------------------------------------------------------ |
| $n$, $N$ | Number of monitoring metrics, Number of components | | | |
| $w$ | Observation lookback window size | | | |
| $C = \{c_{j} | j = 1,2,...,| N|\}$ | Components set, each component |
| $M = \{m_i|i=1,2,...,n\}$, $M = \{\bm{m}_{c_{j}} | j = 1,2,..., | N | \}$ | Metrics set, linked to each component |
| $M = \{M^{A}, M^{B},M^{C}\}$ | Metrics set of its types A, B, C | | | |
| $\bm{x}_{t}^{i} = [x_{t-w+1}^{i},x_{t-w+2}^{i},...,x_{t}^i]$ | Univariate time series of the i-th monitoring metrics |
| $\bm{X}_{t}=[\bm{x}_t^1,\bm{x}_t^2,...,\bm{x}_t^n]$, $\bm{X}_{t} = \{X_{c_j}|j=1,2,...,|N|\}$ | Multivariate time series, monitored from component $c_j$ | | | |
| $\bm{p} = \{\bm{p}_{c_{j}} | j = 1,2,..., | N | \}$ | Change points indices in monitored metrics in j-th component |
| $\bm{S} = \{\bm{s}_{c_{j}} | j = 1,2,...,|N|\}$ | Segments set consits of segments |
$\newcommand{\bm}[1]{\boldsymbol{#1}}$
$
\bm{X}_t = [\bm{x}_t^1,\bm{x}_t^2,...,\bm{x}_t^n]
$
$
\bm{x}_{t}^{i} = [x_{t-w+1}^{i},x_{t-w+2}^{i},...,x_{t}^i]
$
metric -> monitoring metric
> We denote a multivariate time series at time t as Xt = [xt1,xt2..., xtn]T, where xti = [xti−w+1,xti−w+2,...,xti] is the univariate time series of the ith monitoring metric, n is the number of metrics, and w is the observation window size.
from [[2021__ATC__Jump-Starting Multivariate Time Series Anomaly Detection for Online Service Systems|JumpStarter]]
## Problem Definition
$M$, $w$, $\bm{X}_t$ が与えられたときに、$M$から$M^{A} \cup M^B$を抽出することである。
metricとunivariate time series