SPOTは、一変量時系列におけるストリーミング[[外れ値検出]]である。
## Papers
- [[2017__KDD__Anomaly Detection in Streams with Extreme Value Theory]]
- [Anomaly Detection in Streams with Extreme Value Theoryを読んだ - yasuhisa's blog](https://www.yasuhisay.info/entry/2017/11/14/073000)
## Libraries
- [GitHub - limjcst/ads-evt: Anomaly Detection in Streams with Extreme Value Theory](https://github.com/limjcst/ads-evt)
- [[2022__KDD__Causal Inference-Based Root Cause Analysis for Online Service Systems with Intervention Recognition|CIRCA]]で使用されている [CIRCA/evt.py at 03ec82a1a7534900bcc30d5ae09ceb8ba8beb984 · NetManAIOps/CIRCA · GitHub](https://github.com/NetManAIOps/CIRCA/blob/03ec82a1a7534900bcc30d5ae09ceb8ba8beb984/circa/alg/evt.py)
- [GitHub - Amossys-team/SPOT: SPOT algorithm implementation (with variants)](https://github.com/Amossys-team/SPOT)
- [GitHub - cbhua/model-pot: Algorithms about Peaks-over-Threshold, including POT, Stream POT, and DSPOT.](https://github.com/cbhua/model-pot)
- [GitHub - asiffer/libspot: Born to flag outliers](https://github.com/asiffer/libspot)