[[2021__CSUR__A Review on Outlier-Anomaly Detection in Time Series Data]]
[Chapter 5 Outlier detection in Time series | Time Series with R](https://s-ai-f.github.io/Time-Series/outlier-detection-in-time-series.html)
## 入力
- 単変量時系列
- 多変量時系列
## 出力タイプ
- Point outlier
- Subsequences
- Time Series
- 多変量のみ
## 検出手法
- Model-based
- Estimation:
- Median Absolute Deviation (MAD)
- Exponentially Weighted Moving Average (EWMA) method
- Extreme Studentized Deviate (ESD)
- STL decomposition
- Prediction:
- ARIMA model
- ARIMA model within a sliding window to compute the prediction interval, so the parameters are refitted each time that the window moves a step forward.
- Extreme value theory
- Density-based
- [[k近傍法による時系列データの異常部位検出]]
- Histogramming
## 時系列データの異常の種類
- Additive outliers
- Temporal changes
- Level shifts
## 方法論的アプローチ
- Statistical based methods
- Forecasting-based approaches
- Neural Network Based Approaches
- Clustering Based Approaches
- Proximity Based Approaches
- Tree Based Approaches
- Dimension Reduction Based Approaches