[評価指標入門 〜データサイエンスとビジネスをつなぐ架け橋:書籍案内|技術評論社](https://gihyo.jp/book/2023/978-4-297-13314-6) ## 紹介文 機械学習モデルの”良し悪し”を決めるときには,評価指標(Evaluation Metrics)を必要とします。本質的に評価指標の設計方法は自由であり,ビジネス上の価値を考慮して自ら作成することも可能です。RMSEやAUCといったスタンダードなものから,ドメインに特化した数値まで,あらゆる指標が評価指標になりえます。では評価指標はどのように決めるのが良いのでしょうか。また,どのように決めれば冒頭のような悲しい状況を生まずに済むのでしょうか。 本書はこれらの疑問に答えるため,機械学習の良し悪しを決める評価指標を軸に,解くべきビジネスの問題をどうやってデータサイエンスの問題に落とし込むのか,その原理を解説していきます。この原理が普遍的なものであれば,ビジネスがどんなものであっても応用できると考えることができます。 回帰,分類で使用するスタンダードな評価指標についても,基本から丁寧に解説します。本書を読むことで,どのようなケースでどの評価指標を選ぶべきかがわかり,評価指標の読み間違いを避けることができます。 ## 目次 1章 評価指標とKPI 1.1 機械学習と評価指標 1.2 機械学習と最適化計算 1.3 機械学習プロジェクトの流れ 1.4 評価指標とは 1.5 評価指標とKPIと目的関数の関係 1.6 評価指標の決め方を間違えないために 1.7 KPIの特質を損失関数と評価指標に反映する 1.8 まとめ 2章 回帰の評価指標 2.1 回帰とは 2.2 データセットと回帰モデルの準備 2.3 平均絶対誤差 2.4 平均絶対パーセント誤差 2.5 二乗平均平方誤差 2.6 対数平均二乗誤差 2.7 モデルの評価 2.8 真に使うべき評価指標 2.9 その他の評価指標 2.10 まとめ 3章 二値分類における評価指標 3.1 二値分類と評価指標 3.2 データセット 3.3 混同行列 3.4 正解率 3.5 マシューズ相関係数 3.6 適合率 3.7 再現率 3.8 F1-score 3.9 G-Mean 3.10 ROC-AUC 3.11 PR-AUC 3.12 pAUC 3.13 Employee Promotion Dataデータセットの評価 3.14 ビジネスインパクトの期待値計算 3.15 コスト考慮型学習 3.16 まとめ 4章 多クラス分類の評価指標 4.1 多クラス分類とは 4.2 データセット 4.3 混同行列 4.4 正解率 4.5 適合率 4.6 再現率 4.7 F1-score 4.8 ROC-AUC 4.9 最適な評価指標の考察 4.10 まとめ 付録 ビジネス構造の数理モデリング